

A Biologically Inspired Methodology for Multi-Disciplinary Design Optimization

Master's Thesis in Mechanical Engineering Miguel Alexandre Nunes

Outline

1. Introduction

- 2. Methods Used
- 3. Structural and Finite Element Models
- 4. Software Development
- 5. Case Study and Results
- 6. Conclusion and Future Work

• Traditional Engineering Design vs. Biologically Inspired Automated Design

JetTrain

Shinkansen bullet train

kingfisher bird.

• Traditional Engineering Design vs. Biologically Inspired Automated Design

- Biologically Inspired MDO procedure:
 - 1. Map-L Systems for *structural topology representation* (inspired in biology)
 - 2. Finite Element method for structural analysis
 - 3. Genetic Algorithm for *objective topology optimization* (inspired in biology)

CHROMOSOME

- Why use a biologically inspired methodology for topology representation? (Map-L System)
 - Improve the representation for structural elements compared to traditional methods:
 - Bit-array representation may have physical limitations or create non-viable topologies

Voronoi-based representation - has problems of design connectivity

- Why use a biologically inspired methodology for topology optimization?
 (Genetic Algorithm)
 - Improve the solutions for structural optimization in efficiency and robustness given by traditional methods:
 - Solid Isotropic Material with Penalization (SIMP) Methods the solution may be represented by non-existent materials (or hard to manufacture)

"Hard-kill" Methods usually determine a complex structure

Cantilever Benchmark Tests for weight optimization (by Dr. Hugo T. C. Pedro)

Bit Array Representation

Traditional Design

m = 100 %

Wang et al. Design

m = 32.5 %

Balamurugan et al Design

m = 34.0 %

Cantilever Benchmark Tests for weight optimization (by Dr. Hugo T. C. Pedro)

Voronoi-based representation

Map-L System

Traditional Design

m = 100 %

Hamda et al. Design

m = 33.0 %

Biologically Inspired Design

m = 26.0 %

Innovation

Map-L Systems and Multiply Connected components

Innovation

Map-L Systems and Multiply Connected components

Motivation

- Satellite Systems
- Cost Reduction
- Robust Design

Outline

1. Introduction

2. Methods Used

- 3. Structural and Finite Element Models
- 4. Software Development
- 5. Case Study and Results
- 6. Conclusion and Future Work

2.0 Methods

- 2.1 Map L-Systems
- 2.2 Map L-system and Connected Components
- 2.3 Single Objective Optimization

- L-Systems
 - Parallel Rewriting of Strings
 - Branching Topologies
 - Complex Organic Systems modeling
 - Used in mathematics, computer graphics, artificial intelligence, arts, etc.

variables : A B

start : A

rules : $(A \rightarrow AB)$, $(B \rightarrow A)$

n = 0 : A

n=1:AB

n = 2: ABA

n = 3: ABAAB

n = 4: ABAABABA

n = 5: ABAABABAABAAB

- Map L-Systems
 - Extension of the L-Systems
 - Closed loop topologies, planar graphs
 - Complex Organic Systems modeling

Microsorium linguaeforme

- Map L-Systems formalism: Binary Propagating Map 0L-system with markers (mBPMOL-systems):
 - Binary: at most in two daughter cells can be created
 - Propagating: cells cannot merge of disappear
 - OL system: context-free parallel rewriting systems where regions do not interact
 - markers: juncture points on the edges where the cell may divide

• Alphabet:
$$\Sigma = \{A, B, C..., [,], +, -\}$$

• Axiom:
$$\omega = ABAB$$
.

$$\bullet$$
 Rules: $A \to B[-A]x[+A]B$

$$B \rightarrow A$$

• Alphabet:
$$\Sigma = \{1, 2, x, [,], +, -\}$$

• Axiom:
$$\omega=1,2,1,2$$

$$\bullet \text{ Rules: } 1 \quad \rightarrow \quad 2[-1]x[+1]2$$

$$2 \rightarrow 1$$

Example of Edge Rewriting

$$1 \rightarrow 2[-1]x[+1]2$$

 $2 \rightarrow 1$

- Criteria for cellular division
 - 1. Small Angles
 - 2. Small Edges
 - 3. Small Areas
 - 4. Only two markers used

(c) Small areas are not allowed

(b) Small edges are not allowed

(d) Only the first two markers will be selected

- Main Challenges
 - 1. Divide cells without intersecting the connected components
 - 2. Define the new cells properly (general approach for different topologies)

CHALLENGE #1

The Intersection of Connected Components

•
$$\theta_1 \leq \theta \leq \theta_2$$
• $|L| > |L_I|$

•
$$|L| > |L_I|$$

$$|L_I| = r_{L_I}(z_1, z_2, \theta) = real\left\{\frac{z_1 - \overline{z_1} * \alpha}{e^{i\theta} - \alpha * e^{-i\theta}}\right\}$$

$$\alpha = \frac{z_2 - z_1}{\overline{z_2} - \overline{z_1}}$$

CHALLENGE #1

• The Intersection of Connected Components

CHALLENGE #2

- Define new cells:
 - Simple Face Search
 - Breadth First Search
 - Depth First Search
 - and more ...

CHALLENGE #2

- Define new cells: topology search based on Graph Theory
 - "an undirected graph can be represented by a directed graph if every undirected edge a,b is represented by two directed edges < a, b > and < b, a >"
 - Every edge is composed of two half-edges
 - Every half-edge is attached to a different face

CHALLENGE #2

Define new cells: cellular division process - initial map

- Face #1 vertices: [1 2 3 4 1; 5 6 7 5]
- Face #1 edges: [1 2 3 4; 5 6 7]
- Face #1 edges dir: [1 1 1 1; 1 1 1]

CHALLENGE #2

Define new cells: cellular division process - first connection

- Face #1 verts: [1 2 3 4 1 5 6 7 5 1]
- Face #1 edges: [1 2 3 4 <u>8</u> 5 6 7 <u>8</u>]
- Face #1 edges dir: [1 1 1 1 <u>1</u> 1 1 1 <u>2</u>]

CHALLENGE #2

- Define new cells: cellular division process second connection
 - Face #1 verts: [5 2 3 4 1 5 6 7 5 2]
 - Face #1 edges: [9 2 3 4 8 5 6 7 9]
 - Face #1 edges dir: [1 1 1 1 1 1 1 2]
 - Face #2 verts: [2 5 1 2]
 - Face #2 edges: [9 8 1]
 - Face #2 edges dir: [1 2 1]

2.3 Methods/Single Objective Optimization

Genetic Algorithm

CHROMOSOME			
	Gene 1	Gene 2	Gene 3
genotype	$[19.3, \ldots, 53.6]$	$[53.6, \ldots, 17.8]$	$[39.9, \ldots, 46.7]$
	Axiom	Rules	Topology input
phenotype	con. comp. 1:	$1 \rightarrow [+5]; [-3]; [+6]; 5; 5$	number of iterations $= 6$
	2 1 2 1 2 1 4 2	$2 \rightarrow [+1]; [-6]; 1; 2; [+5]$	global shell thickness = 1.8 [mm]
	con. comp. 2:	$3 \rightarrow [-5];6;[-2];[-3];[-4]$	subsystem shell thickness = 0.5 [mm]
	4 5 3 4	$4 \rightarrow [-4];2;1;[-2];6$	external beam feature size $= 9.4 \text{ [mm]}$
,		$5 \to 3;3;[-2];5;6$	internal beam feature size $= 3.1 \text{ [mm]}$
		$6 \rightarrow 6;5;4;1;[-5]$	subsystem position $x = -57.3 \text{ [mm]}$
			subsystem position $y = -46.8 \text{ [mm]}$
			subsystem angle = 168.1 [deg]
		'	

2.3 Methods/Single Objective Optimization

- Minimize mass of structural element
- Optimization: $f(x_0) \leq f(x) \ \forall x \ in \ A$
- Genetic Algorithm (a biological metaphor from genetics applied to computer science)

Outline

- 1. Introduction
- 2. Methods Used
- 3. Structural and Finite Element Models
- 4. Software Development
- 5. Case Study and Results
- 6. Conclusion and Future Work

SAO KA AMATIKA

3.0 Structural and Finite Element Models

- Structural Object, implemented in Matlab and Comsol:
 - Shell (Subsystem + Global)
 - 3D Euler Beams (Internal + External)

3.0 Structural and Finite Element Models

- Finite Element Model in Comsol Multiphysics
- Output:
 - von Mises Stress
 - Displacement

Outline

- 1. Introduction
- 2. Methods Used
- 3. Structural and Finite Element Models
- 4. Software Development
- 5. Case Study and Results
- 6. Conclusion and Future Work

4.0 Software Development

 Automatic Topology Generation (Map L Systems)

Configuration

Structural Analysis
 (Genotype to Phenotype) and FEM

Search for the Optimal Structure (GA)

4.1 Software Development / Automatic Topology Generation

• Objective: create valid topology (gene 3)

genotype/gene 3			phenotype input	range
	$70.2 \rightarrow$	8	number of iterations for topology division	3 10
	$2.6 \rightarrow$	0.4 mm	global shell thickness	$0.1 \dots 12.5 \text{ mm}$
	$80.4 \rightarrow$	10.1 mm	subsystem shell thickness	$0.1 \dots 12.5 \text{ mm}$
	$15.2 \rightarrow$	1.6 mm	external beam feature size	0.1 10.0 mm
	$48.0 \rightarrow$	4.9 mm	internal beam feature size	$0.1 \dots 10.0 \text{ mm}$
	$24.7 \rightarrow$	-70.9 mm	subsystem position x	-140 140 mm
	$36.8 \rightarrow$	-37.0 mm	subsystem position y	-140140 mm
	$48.0 \rightarrow$	$172.7 \deg$	subsystem angle	$0.0 \dots 360.0 \text{ deg}$

4.1 Software Development / Automatic Topology Generation

Configuration

Objective: create valid topology

4.1 Software Development / Automatic Topology Generation

Objective: create valid topology

4.2 Software Development / Structural Analysis

- Objective: transform and analyze the topology
 - Analyze and compute using FEM in COMSOL
 - Output: mass, displacement, stress
 - Compute Fitness

$$fitness = \frac{\text{mass of current map}}{\text{mass benchmark map}}$$

$$+ \lambda_{disp} \times \text{penalization(displacement)}$$

$$+ \lambda_{vMises} \times \text{penalization(von Mises)};$$

4.3 Software Development / Search for the Optimal Structure

 Objective: find best structural element

$$f = 0.146$$

Configuration

$$f = 0.142$$

Outline

- 1. Introduction
- 2. Methods Used
- 3. Structural and Finite Element Models
- 4. Software Development
- 5. Case Study and Results
- 6. Conclusion and Future Work

5.1 Case Study and Results / Satellite Panel Design

- Objective function: mass minimization of structural panel in the HawaiiSat-1 satellite.
- Design parameters: topology, plate thickness, beam cross-section side length and sub-system placement (fixed or free to move).
- Constraints: maximum displacement less than or equal to 0.5 mm and stresses within allowable range (yield for Al 6061-T6 is 241 MPa).
- Boundary conditions: fixed at the vertices of the octagon. The boundary edges are free.

5.3 Case Study and Results / Benchmarks

1. mass = 9.5 kg (100%); 13 µm displacement

2. mass = 3.8 kg (40%); 81 µm displacement

 Optimization Run #1 (50 generations, 100 individuals, subsystem free) Best Individual m = **1.443** kg (bench #1: m= 9.5 kg; bench #2: m= 3.8 kg)

).05

(a) Plot with fitness values for the different generations in the run #1.

(b) Topologies that correspond to the selected fitness values in the fitness plot above.

Optimization Run #2 (50 generations, 200 individuals, subsystem fixed)
 Best Individual m = 1.632 kg (bench #1: m= 9.5 kg; bench #2: m= 3.8 kg)

(a) Plot with fitness values for the different generations in the run #2.

(b) Topologies that correspond to the selected fitness values in the fitness plot above.

0.2

-0.2

Optimization Run #3 (100 generations, 200 individuals, subsystem free)
 Best Individual m = 1.280 kg (bench #1: m= 9.5 kg; bench #2: m= 3.8 kg)

(a) Plot with fitness values for the different generations in the run #3.

(b) Topologies that correspond to the selected fitness values in the fitness plot above.

Summary of results

Run #	Individuals	Generations	Elapsed Time	Fitness	Mass [kg]	Subsystem Position
1	100	50	43h 51m 07s	0.1604	1.443	free
2	200	50	38h 17m 31s	0.1813	1.632	fixed
3.1	200	50	33h 02m 55s	0.1459	1.308	free
3.2	200	50	25h 15m 15s	0.1422	1.280	free

Different optimization runs with the Genetic Algorithm based on the biologically inspired methodology for topology generation

5.4 Case Study and Results / 3D Model

• 3D SolidWorks Model, mass = 1.202 kg

5.4 Case Study and Results

	$\max [kg]$	Max. Displacement $[\mu m]$	Max. Stress [MPa]
$\overline{\text{COMSOL Multiphysics}^{\text{TM}}} \rightarrow$	1.280	473.28	33.6
${\rm SolidWorks}{\rightarrow}$	1.202	461.91	42.2
absolute difference	6%	2%	26%

Comparison between results from COMSOL Multiphysics $^{\!\top\!\!\!M}$ and SolidWorks for the most optimized structure.

SolidWorks model for the best individual. Raw model on the left and finalized model with chamfers on the right.

Outline

- 1. Introduction
- 2. Methods Used
- 3. Structural and Finite Element Models
- 4. Software Development
- 5. Case Study and Results
- **6.Conclusion and Future Work**

6.0 Conclusion and Future Work

- Successful development of a new methodology for multidisciplinary system design optimization inspired on nature
- Mass reduction of 83% compared to the un-optimized benchmark
- Mass reduction of 57% compared to the optimized benchmark
- Potential savings in one panel of \$78,680 (assuming \$10k/kg)
- Potential savings on three panels of \$236,040

6.0 Conclusion and Future Work

- Improve the software developed
 - Optimize code
 - Parallel processing capability
 - Integrate Finite Element Method into the code

- Compare analysis with commercial software
- Extend to other structural elements on the satellite
- 3D version

8.0 Any Questions?

